Slide 5: Static Friction

It's asking about force, probably I need a FBD:

I'm a box with socks

There are four forces:
- I feel: push from person,
- resistance of friction from floor,
- my own weight pushing down,
- and the floor pushing back on me.

I'm not yet sliding

⇒ USE STATIC FRICTION

Remember: you can push harder & harder & still not move something due to STATIC friction. The maximum static friction is:

\[f_s = M_s N \]

... So to move me this person would have to push harder than \(f_s \) to resist/overcome static friction:

\[|F_{\text{push}}| \geq f_s \]

So what is \(f_s \)?

First get normal force \((n) \):

\[\Sigma F_y = M_a y = 0 \text{ not moving vertically} \]

\[n - F_g = 0 \]

\[n = F_g \]

\[n = mg \]

\[f_s = M_s N = M_s mg \]

\[f_s = (0.1)(70)(9.8) \]

\[f_s = 68.6 N \]

Will start to move if I push harder than this!

Note: Direction of friction is negative here; important if asked for it.
Slide 6: Kinetic Friction

Same set-up as before:

\[F_k = M_k N = M_k mg \] (got normal force before)

\[= 0.05(70)(9.8) \]

\[= 34.3 \text{ N} \]

At least 34.3 N to keep me moving!

If pushed less than this, I'd slide gradually to a stop, and static friction force would apply again once I'm stopped.
will a box accelerate down a ramp?

\[F_{gx} = ma_x \]

Unless kinetic friction is so strong that it can stop the box on the incline, the \(F_{gx} = ma_x \) (\(x \)-direction acceleration component of gravity facing down the ramp) will accelerate the box down the ramp.

Because \(M_k \) is always smaller than \(M_s \) for a given surface, in this example we know that the box will indeed accelerate down the ramp.
STATIC
FRICITION:
AMAZON
PACKAGE

\[f_s \leq M_s N \]

\[f_{s,\text{max}} = M_s N \]

When static friction is overcome, the thing starts to move!
We need gravity force down the ramp to overcome the force of friction.

\[\sin \theta = \frac{F_{gx}}{F_g} \]
\[\cos \theta = \frac{F_{gy}}{F_g} \]

\[F_{gx} = F_g \sin \theta \]
\[F_{gy} = F_g \cos \theta \]

KNOWNS

\[m = 2 \text{ kg} \]
\[M_s = 0.5 \]
\[- F_{gx} = F_g \sin \theta = mg \sin \theta = 2(9.8) \sin \theta = 19.6 \sin \theta \]
\[- F_{gy} = M_s N = M_s F_g \cos \theta = M_s mg \cos \theta = 0.5(2)(9.8) \cos \theta = 9.8 \cos \theta \]

\[|F_{gx}| = |f_{s,\text{max}}| \]

\[19.6 \sin \theta = 9.8 \cos \theta \]
\[\frac{\sin \theta}{\cos \theta} = \frac{9.8}{19.6} \]
\[\tan \theta = 0.5 \]
\[\theta = 26.6^\circ \]

Essentially, you can turn \(F_{gx} \) up & up by raising \(\theta \) until it gets to the critical angle where \(|F_{gx}| = |f_{s,\text{max}}| \)!
Perfectly inelastic:

Two things are attached or stuck after the collision.

Elastic:

No distortion or major losses of energy from dissipation.
(KE is conserved)

Inelastic:

Lots of energy release during collision because of friction, fire, heating, distortion.
Bendy/soft things usually have inelastic collisions
(KE not conserved)
INELASTIC VS ELASTIC VS PERFECTLY ELASTIC

Before \rightarrow After

$m_1 = m$ \hspace{1cm} $m_2 = m$

\hspace{1cm} $\circ \rightarrow \circ$

\hspace{1cm} $v_{1x} = 5 \text{ m/s}$ \hspace{1cm} $v_{2x} = 0 \text{ m/s}$

\hspace{1cm} $v_{1f} = 1.0 \text{ m/s}$ \hspace{1cm} $v_{2f} = ?$

MOMENTUM ALWAYS CONSERVED
\[\Sigma p_i = \Sigma p_f \]
\[m_1 v_{1x} + m_2 v_{2x} = m_1 v_{1f} + m_2 v_{2f} \]
\[5 + 0 = 1 + v_{2f} \]
\[v_{2f} = 4 \text{ m/s} \]

Key Q: IS KE CONSERVED?
\[\Sigma KE_i = \Sigma KE_f \]
\[KE_{1x} + KE_{2x} = KE_{1f} + KE_{2f} \]
\[\frac{1}{2} m v_{1x}^2 + \frac{1}{2} m v_{2x}^2 = \frac{1}{2} m v_{1f}^2 + \frac{1}{2} m v_{2f}^2 \]
\[\frac{5^2}{2} + 0^2 = \frac{1^2}{2} + \frac{4^2}{2} \]
\[25 \neq 1 + 16 \]
\[25 \neq 17 \text{ J} \]

LOST 8 J of energy.

INELASTIC: ENERGY NOT CONSERVED
STUNT MAN

Knowns:
- \(m = 80 \text{ kg} \)
- \(v_0 = 2 \text{ m/s} \)
- \(h = 30 \text{ m} \)
- \(\Delta y = -30 \text{ m} \)
- \(a_y = -9.8 \text{ m/s}^2 \)
- \(a_x = 0 \text{ m/s}^2 \)

Unknown:
- \(v = ? \)

\[
\text{PE}_i = mgh_i = (80)(9.8)(30) \text{ J}\\
\text{PE}_f = mgh_f = (80)(9.8)(0) = 0 \text{ J}\\
\text{KE}_i = \frac{1}{2}mv_0^2 = \frac{1}{2}(80)(2)^2 = 160 \text{ J}\\
\text{KE}_f = \frac{1}{2}mv^2 = \frac{1}{2}(80)v^2\\
\text{KE}_i + \text{PE}_i = \text{KE}_f + \text{PE}_f\\
160 + 23520 = 40v^2 + 0\\
\]

\[
v = 24.3 \text{ m/s}\\
\]
Think what's happening:

If I throw an object with mass, I recoil: same as shooting a gun or throwing a big object from a small boat. Can also think of as Newton's 3rd law: I put a force on the ball and it exerts the same force on me! So I start to move backwards, although I don't move much because I'm massive compared to the ball.

Then I catch it...

\[
\begin{align*}
\frac{m_1v_1}{t_1} &= \frac{m_2v_2}{t_2} \\
\text{momentum still conserved} \\
\text{(always in an isolated system)} \\
\text{So I move more fast towards even wall with each throw & catch.}
\end{align*}
\]

Note: ISS still has air & you can still hold two objects together; thanks still friction.

Note 2: If you're anywhere near Earth, gravity vector always points toward Earth, even in orbit (we will cover this in more detail in a few weeks!)
Answer: D

Acceleration vector decreases; consider a_x for different points on the hill!

You'll know speed increases, too, because you're converting more PE to KE (potential to movement)
They Stuck! Sounds **Perfectly inelastic**

by conservation of momentum.

Momentum always conserved in a collision.

Before

\[
\begin{align*}
 m_1 &= 2m \\
 m_2 &= m \\
 v_{1i} &= v_0 \\
 v_{2i} &= 2v_0
\end{align*}
\]

After

\[
\begin{align*}
 m_1 v_{1i} + m_2 v_{2i} &= (m_1 + m_2) v_f \\
 (2m)(v_0) + (m)(-2v_0) &= (2m + m) v_f \\
 2mv_0 - 2mv_0 &= 3mv_f \\
 0 &= 3mv_f \\
 v_f &= 0 \text{ m/s}
\end{align*}
\]

OH! Actually their momenta cancel → they aren’t moving after, so land in center of arena!
Promise solutions to next two probs by next week!

(email me if you think you'll want them and I'll remember to post)