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CAUTION!

There are a lot of abstract concepts in this section
of ERA and we don’t have enough time to go into
minute detail. | highly recommend reading

through the material on your own (as you should

for every topic).



Line Radiative Transfer: Einstein Coefficients

* 3 types of emission:
* Spontaneous emission (A,,)
* Absorption (B,,)
* Stimulated emission (B,)
* Negative absorption
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* For our model (two-level o, 4 B,, B, hv,
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* Which leads to a photon: =



Line Radiative Transfer: Einstein Coefficients

* As outlined in the recombination lines lecture, there is an intrinsic line
width to spectral lines.

* For absorption, the coefficient is dependent on the incident radiation
field.

* We define the profile-weighted mean radiation energy density:
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Line Radiative Transfer: Einstein Coefficients

* In thermodynamic equilibrium (TE) we have stationary states.

* Average rate of emission of photons must balance the average rate of
absorption of photons from the radiation field.
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* Solving for U connects the properties of the quantum system to the
blackbody radiation field:
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Line Radiative Transfer: Einstein Coefficients

* The Boltzmann equation gives
nu __ gu h v
— = — exp
n gL kT

where g, and g, are called statistical weights.

* Combining this with U from the previous slide:
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Line Radiative Transfer: Einstein Coefficients

* When we use the Planck radiation law (2.86) for B (T) near 1=y
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* This must agree with our equation for g from the previous slide for all
temperatures T.

 Which leads to...




Line Radiative Transfer: Equations of Detailed Balance

* The equations of detailed balance:
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* Some takeaways:
* If we know one of the three coefficients, we can determine the other two.
* B, cannot be zero; stimulated emission must occur.



Radiative Transfer

* We go back to Chapter 2 for the equation of radiative transfer:
dl,
ds

=—kl,+ 7,

* For pure absorption:
dl, hvg
— nr B vl
ds ( B ) L LU¢( ) v
e For stimulated emission:
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Radiative Transfer

* Adding these two yields the net absorption coefficient:

hv,
Kk = (%) (nLBry — nuBuyw) ¢(v)
* For spontaneous emission:
dl, , hv
— = Jv = — nyAuro(v)
ds 47

* Now we can write the full spectral-line equation of radiative transfer:
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Radiative Transfer

* Interestingly, we can use these equations to eliminate A,,, B,,, and
B, and Kirchhoff’s law in LTE to recover the Boltzmann equation.

* Our derivations are not specific to total TE, but also LTE!

e Using this, the net opacity coefficient in LTE is:
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Radiative Transfer

 Remember, at radio frequencies hv /kT << 1 leading to stimulated
emission nearly cancelling pure absorption and significantly reducing
line opacity.

* Also, as k 2 1/T and B, a T the product x B, is independent of line
temperature.

* The brightness of an optically thin radio emission line is
proportional to the column density of emitting gas but can be nearly
independent of the gas temperature.

* Question: If we observe the Hl line flux of an optically thin galaxy, what can
we interpret from it?



Excitation Temperature

* When our two-level system is not in LTE, its excitation temperature is

defined by:
ny  gu o huvg
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* T, causes collisional excitations and de-excitations.

* We need to revise our detailed balance equation:

TLU(AUL + BULQ—L -+ CUL) = TLL(BLU’L—L -+ CLU)

14



Masers

* If the upper energy level is overpopulated (n,/n, >g,/g, ) then T is
negative and the net line opacity is negative

* Huh???
* The source is actually brighter due to the medium.

* This is called maser (microwave amplification by stimulated emission
of radiation) amplification and it is very common at radio frequencies.

* Can have line brightness temperatures as high as 101> K!



Masers

* Assume g, = g;.

* We will also assume the line profile is a Gaussian with FWHM Avand

(from last lecture) we can use the numerical approximation ¢(v,) =
1/Av.

* Then: T = hVOB /(n(/' —_ 'nL)dS
cAv

is called the maser gain and amplifies the signal by a factor exp(|t]).

* s> 1013 cm (about 10~ pc, 1 AU) for significant gain to occur.



Masers

* Masers are like lasers — they need to be “pumped” by an energy
source or the upper energy levels are depopulated quickly.

* The maser is saturated if the stimulated emission rate is limited by
the pump luminosity; it is unsaturated if the pump is more than
adequate.

* Where is a good place to look for masers?



Masers

e Supermassive black holes!

* Masers are great sources for measuring astrometry (motions) and
thus are a great tool for measuring black hole mass.



Observed maser spectrum
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LSR Radio Velocity (km s

Distance Along Major Axis (mas)



Masers: Question for you

* Using the information from the figure, what is the mass of the object
causing the Keplerian orbits of these masers? Find the mass density
of this object. Compare it to a star cluster of mass 1000 solar masses
and radius 10 pc.

* V... =900 km/s
oV = 450 km/s

galaxy
* R=0.1pc

V=/GM/R



Masers

* There is an ongoing project called the Megamaser Cosmology Project
which uses masers to measure all sorts of extragalactic parameters
for many systems.
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