
ASTR469 Lecture 6: Effects of the Atmosphere and Dust (Ch. 7)

Assess yourself/study guide after lecture & reading (without peeking at notes)...

1. Describe how the atmosphere changes the appearance of the Sun (and moon) as it sets.
In your answer, also describe the physical mechanism.

2. For the plot shown below, what is the star’s unattenuated magnitude (magnitude before
it enters the atmosphere), and what is the value of k?

Figure 1: Apparent magnitude of a star as a function of airmass. Each cross is one observa-
tion.
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Figure 2: Visual for zenith angle and (simplified) airmass.

1 Airmass

In an earlier lecture we mentioned that some wavelengths must be observed from space,
because the atmosphere blocks that light. In radio bands, the sky is pretty clear. In the
optical and IR, light is not totally blocked but can be partly blocked. Let’s figure out how
the atmosphere affects our observations particularly in optical and IR bands.

All atmospheric effects depend on how much air you’re looking through, and what angle the
incident light has onto the atmosphere. Thus, it’s convenient to have a scaling for how much
atmosphere you’re looking through. For this we define the scaling as compared to looking
straight up (zenith), with the “zenith angle,” z. This is how far from straight up you’re
looking. The horizon is by definition at z = π/2 rad (90 degrees from straight up). See Fig. 2
for a visual of this.

If we model the atmosphere as “plane parallel” (no curvature) then the amount of atmosphere
that the light coming to the telescope passes through is proportional to the secant of z (as
you can infer from Fig. 2). We define the airmass X as a scaling based on what factor more
atmosphere you’re looking through than straight up:

X = sec(z) . (1)

You probably don’t have much experience with secant; it just means 1/ cos(z).

Of course, this is only approximate because the Earth is not flat, and neither is the atmo-
sphere. More accurately accounting for curvature:

X = sec(z)[1− 0.0012(sec2(z)− 1)] (2)

Looking straight up (z = 0), we see that we recover X = 1. If z = 30 ◦, sec 30 ◦ = 2
30.5

=
1.1547, and the exact expression gives 1.1542. It’s generally a small correction, but becomes
large with z > 60 ◦.
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2 Absorption and Scattering

The airmass is not just a theoretical construct. We can plot the airmass versus the apparent
magnitude to chart the amount of “extinction” caused by the atmosphere, as shown in the
plot on question 2 of these lecture notes. “Extinction” refers to a decrease in intensity due
to an intervening medium. This may be caused by both absorption and scattering, which
are closely-related but distinct phenomena. In absorption, a photon excites a dust particle.
This dust particle can then re-emit at a different wavelength. In scattering, the photon is
immediately re-emitted at a different direction. In base cases, the photon is removed from
the line of sight, and so the net effect is the same.

In our atmosphere, and in outer space, “dust” does much of the absorption and scattering
at many wavelengths. Dust are macroscopic particles that we know are either carbon-based
or silicate-based.

Our atmosphere absorbs some light (recall plot of Solar absorption due to atmosphere from
lecture), and scatters some light (think of red sunset/red moon). The setting Sun actually
tells us that this effect is dependent on how much atmosphere you’re looking through, and
is thus dependent on your zenith angle.

One can calculate the relationship between airmass and extinction both theoretically and
empirically. Let’s consider theory briefly. Recall that we previously looked at the equation
of radiative transfer; consider Equation 7 from the Lecture 3 notes. If we’re looking through
the atmosphere, some light might be lost due to atmospheric opacity. The first term (with
B in it) is close to zero if the atmosphere is mostly opaque; that is, the atmosphere itself
does not contribute any light. So, we’re just stuck with some absorption of the background
(star) signal, I0:

Iν(τν) = I0e
−τν , (3)

Where τν is the amount of opacity we’re seeing in the atmosphere and Iν is the amount of
light we actually observe. If we consider that the net opacity will also scale with how much
atmosphere we’re looking through (more material = more net opacity), then we can easily
show that:

Iobs(X) = I0e
−qX . (4)

Here, q is some factor that depends on the properties of the atmosphere and the wavelength
of light (e.g. with dust scattering, blue is extinguished a lot, red is extinguished less). This
equation is not particularly important, but wanted to give you this theoretical background
to have an idea of why the observed effect happens.

We can also use this to show that the change in a star’s brightness in magnitudes as it goes
through different X is approximately:

m(X) = m0 + kX (5)

where m0 is the magnitude outside the atmosphere, and k is again some constant which
depends upon properties of the local atmosphere and the wavelength of light. What a
convenient equation! It’s just a linear function.
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We call the coefficient k the “first order extinction coefficient.” If one observes through the
standard Johnson-Cousins UBVRI filters, one finds typical values

passband k
U 0.6
B 0.4
V 0.2
R 0.1
I 0.08

Although these are average values, k depends on the conditions at the time of observation,
and so changes every night (e.g. haze, temperature, smog), and changes between locations
(e.g. altitude, climate). The better the observing site, and the clearer the night, the smaller
the extinction coefficient. If one is trying to correct for extinction, one must determine
the first-order coefficient since the air changes from one night to the next; in fact, some
astronomers observe multiple times to solve for variations in extinction over the course of a
night (e.g. example on front page!).

The power of this relationship is that if the constant k can be determined through observa-
tions, we can estimate the true magnitude by inferring the magnitude at X = 0 simply by
linear extrapolation (i. e. m0 is the intercept of the line).

If we wanted to be really precise, the actual correction is not a simple linear fit, there are
higher order terms. But, first order is ok for most purposes.

Refraction

Sometime in your experience you should have seen Snell’s law:

µ1 sin(θI) = µ2 sin(θR) , (6)

Where a ray of light coming from medium 1 into medium 2 will start off coming in at angle
θI and be redirected towards the normal line, with a new angle θR.

Because the atmosphere has multiple layers with different µ depending on pressure, density,
etc., refraction changes the apparent position of stars when their light passes into our at-
mosphere! Snell’s Law requires that light is bent towards the normal, so stars should be
higher in the sky than they otherwise would. Like refraction, this is more prevalent at low
elevations.

You have seen refraction when you notice the setting Sun turn into an oval. The Sun is
actually below the horizon at sunset by around 35′. It is off by less than one arcminute for
objects near zenith.

The problem with treating refraction theoretically is that the atmosphere has different layers
of varying density and temperature. The amount of refraction is pressure dependent, and so
is complicated by the various layers.
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Birney says that it can be shown that the only layer that matters is the final one. We can
therefore define an angle of refraction

R ' C tan z′ (7)

Where C is a constant and z′ is the observed zenith angle (not the real one of the source). For
z′ less than 45◦, C may be assigned a value of 1′. Things again get much more complicated
at larger values of the zenith angle.

Empirically there’s a good formula called Comstock’s formula that gives you the value w.r.t
local atmospheric conditions: barometric pressure b in mmHg and temperature T in Kelvin:

θR ' 60.4

(
b/760

T/273

)
tan(z′) (8)

This works accurately to angles z . 75◦.

Seeing

The atmosphere also distorts astronomical observations in other ways:

1. Stars twinkle (scintillation)

2. Images are blurred

3. Stars in images move

These three effects can be called collectively “seeing,” although often scintillation is addressed
separately.

Seeing is caused by the non-uniformity of the Earth’s atmosphere. The atmosphere is com-
posed of “cells” that have similar temperatures and densities. Adjacent light rays will en-
counter different cells. This means that adjacent light rays will be diffracted by different
amounts.

This leads to image blurring. The diffraction limit discussed earlier is the theoretical best
performance you can expect. Real telescopes on Earth almost never reach the diffraction
limit due to seeing. “Seeing” is always measured as an angle: how much a star is blurred or
jiggled.

It gets worse towards the horizon:
θs = θs0X

3
5 (9)

Seeing ranges from around 1′′ (very good) to 10′′ (very bad), and is caused by cells of air in
the atmosphere, most of which are 7 km up. If you want to quantify seeing, you can measure
the size of a star. This size is the seeing plus the telescope diffraction, added in quadrature.
We can correct for seeing using adaptive optics. In adaptive optics, the telescope mirrors
are deformed in real time to correct for seeing. Of course, building your telescope at high
altitudes in a site without much air turbulence will lessen this effect!
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