
ASTR469 Lecture 12: Spectroscopy (Ch. 11–12)
Note: the book covers different types of diffraction gratings in much greater
detail than will be discussed in class.

Assess yourself/study guide after lecture & reading (without peeking at notes)...

1. Remind yourself: what are the primary three fundamental physical ways emission lines
might be produced (what produces them, and how)?

2. What is the rest emission frequency of the He87γ transition line?

3. What is the rest emission frequency of the Balmer-series Hβ line?

4. Let’s say there’s a laser (emission wavelength 430 nm) that is traveling towards you at
half the speed of light. What is the wavelength you would observe from that laser?

5. What if the previous laser were instead traveling away from you at half the speed of
light?

6. If you observed a broad-band emitter (like a T = 7000 K blackbody star) with a cloud
of Hydrogen in front of it, what (qualitatively) would the observed optical spectrum
look like? (Would it be a smooth continuum, emission-line spectrum, or absorption-
line spectrum, and what lines might be present?)

7. Let’s say the cloud in the previous problem is really quite extended, but still in thermal
equilibrium (that is, all parts of it are in an equilibrium state of emission/absorption).
If you instead observed another part of the same cloud, now not directly observing
the part with the hot star behind it, what (qualitatively) would the observed optical
spectrum look like? (Would it be a continuum, emission-line spectrum, or absorption-
line spectrum, and what lines might be present?)
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1 Spectroscopy

Generically, spectroscopy is the study of the intensity of light spread out in frequency. This
differs from photometry, which is the study of the intensity light at a particular frequency
(or measured within a single band/range of frequencies). The spread-out-light is called a
spectrum, a plot of intensity versus frequency. You can make spectra at any wavelength in
astrophysics, although similarly to photometry the techniques to do so differ.

In UV/optical/IR photometry, we were treating the incoming light as single photons (par-
ticles). However, to make spectra for these wavelengths, the detecting apparatuses need to
use the wavelike nature of light to spread out the light based on its wavelength.

NOTE that the rules and statistics for detection in spectroscopy still follow the
rules that we laid out last lecture. Integrating for longer time will generally raise
your signal-to-noise ratio by

√
t for a given spectral line you’re trying to detect.

With photometry we talked a lot about what makes light (blackbody radiation; we will touch
on more radiation processes next week). Today we’re going to fill in some back-story about
what makes spectral lines interesting, and then we’ll briefly discuss UV/optical/IR detection
technologies at the end.

2 Physical Origins of Lines

There are three ways we get lines that have slightly different (but related) physical origins.
I should note here that the book Essential Radio Astronomy (search online; the whole book
is available there) is an excellent resource for more detailed background physics on these
effects.

2.1 Atomic transition lines.

You should be familiar with the Bohr model, in which electrons are quantized at fixed
separations from the nucleus. These states are quantized by numbers n = 1, 2, 3, ..., although
for most atoms, the electrons preferentially want to occupy the lowest few states possible.
It takes energy to kick electrons up to higher states. For instance, a Hydrogen atom with
n = 1 is in its neutral state, while Hydrogen with an electron at n = 2 has been “excited”
by some incoming energy.

Each quantized state is characterized by a given amount of energy that has to do with
balancing the movement of the electron (kinetic energy), which would naturally carry the
electron away from the nucleus, and the Coulomb force (potential energy/centripetal force
in this case), which keeps the electron bound in that state. Under the assumption that
your nucleus has (relatively) infinite mass compared to the electron, and that the nucleus is
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stationary (not moving; only the electron is moving), this energy is given by

En = KE + PE = − mee
4

8h2ε20n
2

(1)

where me = 9.109×10−31 kg is the mass of an electron, e = 1.602×10−16 C is the elementary
charge, h is the same Planck constant we’ve seen before, and ε0 = 8.854×10−12 m−3 kg−1 s4 A2

is the permittivity of free space.

When an electron changes from one state to another (say it decays from a higher n state to
a lower n state), it emits some energy. The packet of energy that comes out is the difference
between the energies at those two states.

∆E = En+∆n − En =
m4

e

8h2ε20

[
1

n2
− 1

(n+ ∆n)2

]
(2)

So when an electron jumps between states, a packet of energy ∆E comes out. All of that
energy comes out as a single photon!

∆E = hν (3)

And you can see, therefore, that the frequency ν of that emitted photon can be uniquely
associated with that transition.

OK, so above we made some basic assumptions about the nucleus just to give an idea of how
this emission works. But in reality, the derivation is a tad more complicated, and depends on
how stationary, and how large the nucleus is. The full expression for the emission frequency
of a transition for a particular atom of nuclear mass M is given by

νemit = RMc

[
1

n2
− 1

(n+ ∆n)2

]
(4)

RMc ' 3.29× 1015

[
1 +

me

M

]−1

(5)

Where c is the speed of light. This gives the full expression for the emission frequency (in
Hz) of any transition between higher state n+∆n and lower state n, for any atom of nuclear
mass M .
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Notation used to refer to transition lines...

Completely ionized atoms:
These get the atomic symbol with a greek number showing how many atoms are ejected.
Greek number “I” refers to a neutral atom, while “II” refers to a singly-ionized atom, and
so forth. For example:

HI Neutral Hydrogen.
HII One e− completely removed (∆n =∞).
OI Neutral Oxygen.
OIII Two electrons removed.

Excited atoms:
These get atomic symbol, then a number indicating the lower energy state, then a greek alpha
character representing ∆n, the size of the transition. For instance, the greek alphabet goes
in order α, β, γ, δ, ε..., which corresponds to ∆n = 1, 2, 3, 4, 5... transitions. So for instance:

H114β

H tells you it’s Hydrogen.
114 tells you the transition has n = 114.
β tells you the transition has ∆n = 2.

So this is a transition between the two excited states n = 116 and n = 114 for the Hydrogen
atom.

Balmer and Lyman Series:
There are a few exceptions to this notation for very common Optical-wavelength transitions.
Notably...

Lyman Series (base level n = 1)
Lyα n = 2 to n = 1 transition.
Lyβ n = 3 to n = 1 transition.

Balmer Series (base level n = 2)
Hα n = 3 to n = 2 transition.
Hβ n = 4 to n = 2 transition.
Hγ n = 5 to n = 2 transition.

Regardless of notation, any of the above transitions can use Equations 4 and 5 to tell the
rest emission frequency.

2.2 Spin-flips in Neutral Hydrogen

Our atomic-transition-line notes were somewhat detailed because they are by far the most
prevalent type of line you’ll see used in astronomical analyses. These last two we will talk
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about conceptually.

It turns out even neutral atoms can sporadically emit and absorb photons, due to a “spin-
flip” of a particle in the atom. Spontaneous emission of these happens relatively rarely,
however particularly for neutral (non-ionized) Hydrogen, there is just so much of it in the
cosmos that many galaxies are observable in the neutral Hydrogen line.

Electrons and nuclei have spins, and these spins are quantized to two states, parallel or anti-
parallel (e.g. both are clockwise: parallel; or one or the other is spinning counter-clockwise:
anti-parallel). The transition from one spin-state to another has a specific transition energy
that demarcates the HI line:

∆E = 5.9× 10−6 eV
νHI = 1420.4 MHz
λHI = 21 cm

Finding this line means that there is an abundance of neutral Hydrogen in your target.

2.3 Spinning Molecules

Some molecules have an asymmetric charge distribution; therefore if they spin, they have a
dipole moment (water molecules are a good example of this). It turns out that the atomic
quantization of electrons also applies on the macro scale, and that the rotational momentum
of molecules is also quantized into specific spin rates. Each spin rate is associated with a
given energy, and if the spin rate spontaneously decays to a lower state, a photon with an
energy equal to the higher-spin state will be emitted. That outburst of energy (or absorption
of energy, if an incoming photon incites a higher spin state in a molecule) is associated with
a photon of a specific frequency.

3 Kirchoff’s Laws and Observing Spectral Lines

So now we know about what can make photons that are at fixed energy levels, or at a specific
frequency/wavelength. How do we actually observe these and what do they look like?

First, to get an observable line you need to have a significant cloud of atoms/molecules all
undergoing similar energy transitions. The population of those will lead to observable lines
from astronomical distances.

You may see the line in emission if you are observing a cloud in local thermal equilibrium,
with no hotter background source directly along your line of sight behind it. Most emission
lines come from spontaneous decay (higher energy state to lower energy state, thus a photon
is emitted). Photons from the same cloud might also be absorbed by the cloud itself, thus
sustaining some long-term level of line emission.

You will see a line in absorption if you are observing a hot broad-band source with a cooler
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Figure 1: Emission from an atomic transition line and a molecular spin line seen in absorption
and emission.

cloud along your line of sight. Photons from the original target are broad-band, however the
photons entering e. g. a Hydrogen cloud with the right energy to incite a n = 1 to 2 jump
will go into inciting that jump. Thus, that photon will not be observed by you (it will be
absorbed).

See Figure 1 for reference. The same principles apply to any of the processes listed in the
previous section.

4 Using Spectral Lines

The basic properties of any line are the height (referred to as peak intensity, flux, or tem-
perature depending on what electromagnetic band you are observing in), the observed peak
frequency ν, and the width of the line ∆ν. These three pieces of information give us a lot of
interesting source properties we can infer. Here we’ll discuss just a few of these.

4.1 Redshift

You should all be familiar with the doppler effect. In the case of emission lines, a line observed
offset from its emission frequency (e.g. at a shorter or longer wavelength) is experiencing
movement compared to you along your line of sight.

In astronomy we think of these in terms of “redshifts” (wavelength gets longer, hence redder)
for objects traveling away from us, and “blueshifts” (wavelength gets shorter, hence bluer)
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for objects traveling towards us. The redshift z is quantified by:

z =
v

c
=
νemit

νobs

− 1 (6)

Note that this can be rewritten in a common form

1 + z =
λobs

λemit

(7)

Note that for redshifts, z > 0 and the following are true:

• The object (atom or molecule cloud in this case) is traveling away from us.

• Lengths (e.g. λ) appear to grow by (1 + v/c).

• Frequencies (e.g. ν or ∆ν) appear to shrink by (1 + v/c).

4.2 Line broadening

A number of things can broaden an observed line width. This can include, of course, instru-
mental effects; if you are dividing frequencies into specific sub-bands of frequency, your line
can only be as narrow as the narrowest frequency band.

There are intrinsic line widths that arise from quantum-level variations in transitions (no
value is exact)!

A gas is also at a fixed temperature. Gas in thermal equilibrium will vibrate (larger tem-
peratures, greater kinetic variation), and thus there will be some doppler broadening due to
thermal variations.

Gas is also often sitting in a large rotating spheroid, or perhaps a disk-shaped galaxy. There
is a distinct rotational profile for diffuse gas in these scenarios that has a roughly symmetric
double-horned structure. Measuring the width of the rotational dynamics will tell you the
rotational velocity of that galaxy or cloud.

4.3 Intensity of Spectral Lines

Finally, the intensity of spectral lines (and the relative intensity of several spectral lines in
more complex objects like a galaxy) can be used to measure a number of things, including
the gas abundance, density, mass, levels of star formation activity, or the presence of an
active galactic nucleus. We will not go into the details of these measurements as they are
many and varied depending on what process you are observing.

5 UV/Optical/IR Instrumentation

To perform spectroscopy, we need to spread the light out over frequency. In the UV/optical/IR
this is done with some sort of dispersive element.
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Your book is quite loquacious on this topic so I will not go into details here. The most
common modern technology used is a diffraction grating, rather than a prism.

[Birney Figure 12.1]
We are looking at light passing through a slit of finite width. It gets collimated, dispersed,
and focused (at the “camera”), then imaged at the spectrograph (which could be a CCD).
The light collected is just an image of the slit, spread out in wavelength.

The collimator and camera are just lenses, so what is the dispersing element? There are a
few options:

Prisms [Birney 12.2]
Prisms are the simplest diffraction medium. Snell’s law is wavelength dependent, so prisms
can spread out light. Angular dispersion, the change in diffraction angle with wavelength,
dθ/dλ ∝ −λ−3, where θ is deviation angle. The negative sign shows that the angle of de-
viation is smaller for larger wavelengths: blue light is refracted more than red light. The
magnitude of the dispersion much greater at shorter wavelengths - which is the good in some
cases, but complicates matters in most applications. For this reason, prisms are not used
much any more.

Diffraction Gratings [Birney 12.4]
Diffraction gratings have grooves, and the grooves work to disperse light in a manner similar
to that of a prism. This works because light rays diffracted into a given angle will construc-
tively interfere if their path differences are equal to an integer number of wavelengths (figure
helps here).

A few facts about diffraction gratings:

1. Can be transmission (e.g. holes) or reflection (mirrors with special diffractive proper-
ties)

2. Different from prism in that

(a) dispersion uniform over small ranges of wavelength,

(b) shorter wavelengths (blue) dispersed less than longer (red),

(c) we get several spectra “orders,” at once, of decreasing brightness - first, second,
third, fourth, etc. order.

3. Can concentrate the light into a single order if dispersing grooves are non-symmetric,
a “blaze.” To characterize the blaze we have a parameter called the “blaze angle.”

The condition for interference is:

mλ = σ(sinα + sin β) (8)

which is known as the grating equation. α and β have opposite signs [Figure 12.3]. m gives
the “order” mentioned earlier. m is an integer, and can be negative. m = 0, the grating is
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a mirror “specular reflection”, or zeroth order.

α + β = 2θ (9)

Let’s take an example: 600 grooves/nm, m = 2, 500nm, α = 5 ◦. This leads to β = 31 ◦ and
θ = 18 ◦

If the orders overlap, the signal is confused and cannot be effectively used. This sets the
“free spectral range” where there is no overlap. As m increases, this becomes more and more
of a problem. Have to solve it by filtering the light.

Last thing on diffraction gratings, resolving power

R = λ/∆λ (10)

characterizes the grating. Sometimes high-resolution spectra are desirable (high R), and
sometimes low resolution (low R). “Echelle” spectrographs work at very high order, with
very high blaze angles, and high resolution.
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