Displacement, Velocity, and Acceleration

Math resources

- Appendix A in your book!
- Symbols and meaning
- Algebra
- Geometry (volumes, etc.)
- Trigonometry

SERWAY-VUILLE COLLEGE PHYSICS
tenth edition

Appendix A

- Logarithms

Reminder

- You will do well in this class by PRACTICING!

Extra Practice Problems:

$$
2.1,2.3,2.5,2.21,2.25,2.27
$$

Also: (Ungraded) homework warm-up problems

Reminders

Next class is next Wednesday.

Problem solving day: practicing for exam.
First clicker grade counted; BRING YOUR CLICKERS!

Problem Solving Pro-tips

1. Draw a picture!
2. Use and label your reference frame.
3. List what you KNOW and DON'T KNOW in variable form.
4. Practice helps you pick best formulas!

Scalars and Vectors

- Scalar: just a number (magnitude).
- Vector: a number (magnitude) with a direction.

Scalars and Vectors

- Scalar: just a number (magnitude).
- Vector: a number (magnitude) with a direction.

Scalars and Vectors

- Scalar: just a number (magnitude).
- Vector: a number (magnitude) with a direction.

Distance (scalar): $100 m+30 m=130$ meters

Scalars and Vectors

- Scalar: just a number (magnitude).
- Vector: a number (magnitude) with a direction.

Displacement, \mathbf{x} (vector): 100-30 $=+70$ meters

Distance (scalar): $100 \mathrm{~m}+30 \mathrm{~m}=130$ meters

Scalars and Vectors

Scalars:

Distance, x Speed, v

Vectors:

Displacement, \mathbf{x} Velocity, v
Acceleration, a

Vectors are usually represented as BOLD (or with an arrow hat).

Frames of reference

Ground's reference frame

Driver's reference frame

- In ground frame of reference, one car has $\mathrm{v}=+80 \mathrm{~km} / \mathrm{h}$ while the other has $\mathrm{v}=+70 \mathrm{~km} / \mathrm{h}$
- In reference frame of driver, velocity of other car is $\mathrm{v}=+10 \mathrm{~km} / \mathrm{h}$

Reference frames on paper
 - PT \#1: Draw a picture!

"Jogger went 10 m east, 10 m north, sat on a stump a while, then walked 25 m east."

Reference frames on paper

- PT \#1: Draw a picture!
"Jogger went 10m east, 10m north, sat on a stump a while, then walked 25 m east."

Reference frames on paper

- PT \#1: Draw a picture!
- PT \#2: Use (and LABEL) a coordinate system.
"Jogger went 10 m east, 10 m north, sat on a stump a while, then walked 25 m east."

Reference frames on paper

 - PT \#1: Draw a picture!- PT \#2: Use (and LABEL) a coordinate system.
"Jogger went 10 m east, 10 m north, sat on a stump a while, then walked 25 m east."

The direction of these arrows is important for setting up problems and may affect the sign of your variables and/or answers (will see example soon)

Displacement (vector)
Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Final position

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Final position

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Final position

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Final position

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Final position

$$
x_{f}=-5.0 \mathrm{~m}
$$

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

This one's easy, but let's practice pro tips!

Final position

$$
x_{f}=-5.0 \mathrm{~m}
$$

$$
\Delta x=?
$$

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

$$
\Delta x=-5.0 m-(+3.0 m)=-8.0 m
$$

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

Write your knowns and unknowns!

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

Write your knowns and unknowns!

Displacement (vector)

Definition: change in the position of an object Displacement: $\Delta x=x_{f}-x_{i}$
Ex: Car initially parked 3.0 m to right of house, drives around the block, ends up 5.0 m to left of house. Find the displacement of the car.

Many people struggle with signs! Ask yourself after defining each variable:

Is the sign consistent with what direction l've called positive?

Up and right are usually positive! (particularly in WebAssign unless explicitly stated in the problem)

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving Average velocity going to Pitt:

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving Average velocity going to Pitt:

$$
x_{i}=0 \quad t_{i}=0
$$

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving Average velocity going to Pitt:

$$
\begin{array}{llrl}
x_{i} & =0 & & t_{i}
\end{array}=0
$$

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving Average velocity going to Pitt:

$$
\begin{array}{ll}
x_{i}=0 & t_{i}=0 \\
x_{f}=+70 \mathrm{mi} & t_{f}=2 \mathrm{hrs}
\end{array}
$$

$\mathrm{t}=2 \mathrm{hrs}$

$$
\bar{v}=\frac{70 \mathrm{mi}-0}{2 \mathrm{hrs}-0}=+35 \mathrm{mi} / \mathrm{hr}
$$

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving Average velocity going to Pitt:

$$
\begin{array}{ll}
x_{i}=0 & t_{i}=0 \\
x_{f}=+70 \mathrm{mi} & t_{f}=2 \mathrm{hrs}
\end{array}
$$

$\mathrm{t}=2 \mathrm{hrs}$

$$
\bar{v}=\frac{70 \mathrm{mi}-0}{2 \mathrm{hrs}-0}=+35 \mathrm{mi} / \mathrm{hr}
$$

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average velocity coming back from Pitt?
Average velocity of round trip?

> If you finish those: Average speed (scalar!) of round trip?

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Speed: $140 \mathrm{mi} / 3 \mathrm{~h}=47 \mathrm{mi} / \mathrm{h}!$

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Speed: 140mi / 3h = $47 \mathrm{mi} / \mathrm{h}$!

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average velocity coming back from Pitt:

Speed: $140 \mathrm{mi} / 3 \mathrm{~h}=47 \mathrm{mi} / \mathrm{h}$!

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average velocity coming back from Pitt:

$$
\bar{v}=\frac{0-70 \mathrm{mi}}{3 \mathrm{hrs}-2 \mathrm{hrs}}=-70 \mathrm{mi} / \mathrm{hr}
$$

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average velocity coming back from Pitt:

$$
\bar{v}=\frac{0-70 \mathrm{mi}}{3 \mathrm{hrs}-2 \mathrm{hrs}}=-70 \mathrm{mi} / \mathrm{hr}
$$

Average velocity of round trip:

Speed: $140 \mathrm{mi} / 3 \mathrm{~h}=47 \mathrm{mi} / \mathrm{h}$!

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average velocity coming back from Pitt:

$$
\bar{v}=\frac{0-70 \mathrm{mi}}{3 \mathrm{hrs}-2 \mathrm{hrs}}=-70 \mathrm{mi} / \mathrm{hr}
$$

Average velocity of round trip:

$$
\bar{v}=\frac{0-0}{3 \mathrm{hrs}-0}=0
$$

Speed: $140 \mathrm{mi} / 3 \mathrm{~h}=47 \mathrm{mi} / \mathrm{h}$!

Average Velocity

Definition: velocity is displacement per unit time

$$
\bar{v} \equiv \frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
$$

SI units: m/s

Ex: Go to Pittsburgh in 2 hrs, back in Morgantown 3 hrs after leaving

Average velocity coming back from Pitt:

$$
\bar{v}=\frac{0-70 \mathrm{mi}}{3 \mathrm{hrs}-2 \mathrm{hrs}}=-70 \mathrm{mi} / \mathrm{hr}
$$

Average velocity of round trip:

$$
\bar{v}=\frac{0-0}{3 \mathrm{hrs}-0}=0
$$

Speed: $140 \mathrm{mi} / 3 \mathrm{~h}=47 \mathrm{mi} / \mathrm{h}$!

Instantaneous Velocity

- Instantaneous velocity is velocity at a particular instant.
- Only use the average velocity when asked for "average."

Instantaneous Velocity

- Instantaneous velocity is velocity at a particular instant.
- Only use the average velocity when asked for "average."

Instantaneous Velocity

- Instantaneous velocity is velocity at a particular instant.
- Only use the average velocity when asked for "average."

Will discuss this difference more next lecture.

Acceleration

- Average acceleration = change in velocity/time

$$
\bar{a} \equiv \frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{\Delta v}{\Delta t}
$$

- Instantaneous acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

SI Units:
 $\mathrm{m} / \mathrm{s} / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$

Acceleration

- Average acceleration = change in velocity/time

$$
\bar{a} \equiv \frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{\Delta v}{\Delta t}
$$

- Instantaneous acceleration

$$
a=\lim _{\Delta t \rightarrow 0} \frac{\Delta v}{\Delta t}
$$

SI Units: $\mathrm{m} / \mathrm{s} / \mathrm{s}=\mathrm{m} / \mathrm{s}^{2}$

The sign of acceleration indicates which direction its velocity changes. Positive acceleration means speeding up when moving in the positive x direction OR slowing down when moving in the negative x direction.

Signs of acceleration

- A car slowing down at a stop sign

- A bullet hitting a wall

- Sprinter out of the blocks

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{aligned}
t_{f}=t & t_{i}=0 \quad \text { "t at time zero" } \\
x_{f}=x & x_{i}=x_{o} \text { "location at time zero" } \\
v_{f}=v & v_{i}=v_{o}
\end{aligned}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{aligned}
t_{f}=t & t_{i}=0 \quad \text { "t at time zero" } \\
x_{f}=x & x_{i}=x_{o} \text { "location at time zero" } \\
v_{f}=v & v_{i}=v_{o}
\end{aligned}
$$

$$
a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{aligned}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& x_{f}=x \quad x_{i}=x_{o} \text { "location at time zero" } \\
& v_{f}=v \quad v_{i}=v_{o} \text { "velocity at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \quad \square a=\frac{v-v_{o}}{t}
\end{aligned}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{array}{lll}
t_{f}=t & t_{i}=0 \quad \text { "t at time zero" } \\
x_{f}=x & x_{i}=x_{o} & \text { "location at time zero" } \\
v_{f}=v & v_{i}=v_{o} & \text { "velocity at time zero" } \\
a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \\
\square a=\frac{v-v_{o}}{t} & \square & v=v_{o}+a t
\end{array}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{aligned}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \quad \square \quad v=v_{o}+a t \\
& v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}
\end{aligned}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{aligned}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \quad \square \quad v=v_{o}+a t \\
& v_{a v g}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \square v_{a v g}=\frac{x-x_{o}}{t}
\end{aligned}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{align*}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& x_{f}=x \quad x_{i}=x_{o} \text { "location at time zero" } \\
& v_{f}=v \quad v_{i}=v_{o} \text { "velocity at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \square \quad v=v_{o}+a t \\
& v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& v_{\text {avg }}=\frac{x-x_{o}}{t} \square x=x_{o}+v_{\text {avg }} t
\end{align*}
$$

Motion at Constant Acceleration

 Special case when a does not change with timeNotation:

$$
\begin{aligned}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& x_{f}=x \quad x_{i}=x_{o} \text { "location at time zero" } \\
& v_{f}=v \quad v_{i}=v_{o} \text { "velocity at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \square v v v_{o}+a t \\
& v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \square v_{\text {avg }}=\frac{x-x_{o}}{t} \square x=x_{o}+v_{\text {avg }} t \\
& v_{\text {avg }}=\frac{v+v_{o}}{2}
\end{aligned}
$$

Motion at Constant Acceleration

 Special case when a does not change with time Notation:$$
\begin{aligned}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& x_{f}=x \quad x_{i}=x_{o} \text { "location at time zero" } \\
& v_{f}=v \quad v_{i}=v_{o} \text { "velocity at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \square v v v_{o}+a t \\
& v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \square v_{\text {avg }}=\frac{x-x_{o}}{t} \square x=x_{o}+v_{\text {avg }} t
\end{aligned}
$$

Similar derivations lead to more equations:

$$
v_{a v g}=\frac{v+v_{o}}{2}
$$

Motion at Constant Acceleration

 Special case when a does not change with time Notation:$$
\begin{gathered}
\quad \begin{aligned}
t_{f}=t & t_{i}=0 \quad \text { "t at time zero" } \\
x_{f}=x & x_{i}=x_{o} \text { "location at time zero" } \\
v_{f}=v & v_{i}=v_{o}
\end{aligned} \text { "velocity at time zero" } \\
a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \quad \square \\
v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \square v=v_{o}+a t
\end{gathered}
$$

Similar derivations lead to more equations:

$$
v_{a v g}=\frac{v+v_{o}}{2} \quad \Delta x=v_{o} t+\frac{1}{2} a t^{2}
$$

Motion at Constant Acceleration

 Special case when a does not change with time Notation:Similar derivations lead to more equations:

$$
v_{a v g}=\frac{v+v_{o}}{2}
$$

$$
\Delta x=v_{o} t+\frac{1}{2} a t^{2}
$$

$$
v^{2}=v_{o}^{2}+2 a \Delta x
$$

$$
\begin{aligned}
& t_{f}=t \quad t_{i}=0 \quad \text { "t at time zero" } \\
& x_{f}=x \quad x_{i}=x_{o} \text { "location at time zero" } \\
& v_{f}=v \quad v_{i}=v_{o} \quad \text { "velocity at time zero" } \\
& a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \square a=\frac{v-v_{o}}{t} \square v v=v_{o}+a t \\
& v_{\text {avg }}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \square v_{\text {avg }}=\frac{x-x_{o}}{t} \square x=x_{o}+v_{\text {avg }} t
\end{aligned}
$$

Which formula to use?

$$
v_{\text {aug }}=\frac{v-v_{0}}{2}
$$

Which formula to use?

$$
v=v_{o}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$$
v_{a v g}=\frac{v-v_{o}}{2}
$$

$\Delta x=v_{o} t+\frac{1}{2} a t^{2}$

Which formula to use?

$$
v=v_{o}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$$
v_{a v g}=\frac{v-v_{o}}{2}
$$

$$
\Delta x=v_{o} t+\frac{1}{2} a t^{2}
$$

Pro Tip \#3: List what you know and need to know in variable form

Which formula to use?

$$
v=v_{o}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$$
v_{a v g}=\frac{v-v_{o}}{2}
$$

$$
\Delta x=v_{o} t+\frac{1}{2} a t^{2}
$$

Pro Tip \#3: List what you know and need to know in variable form 1 equation with one unknown is solvable.

Which formula to use?

$$
v=v_{o}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$$
v_{a v g}=\frac{v-v_{o}}{2}
$$

$$
\Delta x=v_{o} t+\frac{1}{2} a t^{2}
$$

Pro Tip \#3: List what you know and need to know in variable form 1 equation with one unknown is solvable. 2 equations with two unknowns is solvable.

Which formula to use?

$$
v=v_{o}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a \Delta x
$$

$$
v_{\text {avg }}=\frac{v-v_{o}}{2}
$$

$$
\Delta x=v_{o} t+\frac{1}{2} a t^{2}
$$

Pro Tip \#3: List what you know and need to know in variable form 1 equation with one unknown is solvable. 2 equations with two unknowns is solvable.

Pro Tip \# 4: Practice helps you pick best formulas!

Let's Practice!

The speed of a nerve impulse in the human body is about $100 \mathrm{~m} / \mathrm{s}$. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

Let's Practice!

The speed of a nerve impulse in the human body is about $100 \mathrm{~m} / \mathrm{s}$. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

Draw a picture and list knowns and unknowns

Let's Practice!

The speed of a nerve impulse in the human body is about $100 \mathrm{~m} / \mathrm{s}$. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

Draw a picture and list knowns and unknowns
Average velocity $=100 \mathrm{~m} / \mathrm{s}=$ displacement $/$ time

Let's Practice!

The speed of a nerve impulse in the human body is about $100 \mathrm{~m} / \mathrm{s}$. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

Draw a picture and list knowns and unknowns
Average velocity $=100 \mathrm{~m} / \mathrm{s}=$ displacement $/$ time

Change in time $=\Delta t=\Delta x / v=\sim 2 \mathrm{~m} / 100 \mathrm{~m} / \mathrm{s}$

Let's Practice!

The speed of a nerve impulse in the human body is about $100 \mathrm{~m} / \mathrm{s}$. If you accidentally stub your toe in the dark, estimate the time it takes the nerve impulse to travel to your brain.

Draw a picture and list knowns and unknowns
Average velocity $=100 \mathrm{~m} / \mathrm{s}=$ displacement $/$ time

$$
\begin{gathered}
\text { Change in time }=\Delta \mathrm{t}=\Delta \mathrm{x} / \mathrm{v}=\sim 2 \mathrm{~m} / 100 \mathrm{~m} / \mathrm{s} \\
=0.02 \mathrm{~s} \text { or } 20 \text { milliseconds }
\end{gathered}
$$

Problems inside problems

Might need to break down problem into smaller pieces! Solve in sequence.

Let's Practice!

1 mile $=1609 \mathrm{~m}$

Let's Practice!

A rocket ship is capable of accelerating at a rate of $0.60 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for it to get from going $55 \mathrm{mi} / \mathrm{h}$ to going $60 \mathrm{mi} / \mathrm{h}$?

Let's Practice!

A rocket ship is capable of accelerating at a rate of $0.60 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for it to get from going $55 \mathrm{mi} / \mathrm{h}$ to going $60 \mathrm{mi} / \mathrm{h}$?

Draw a picture and list knowns and unknowns

Let's Practice!

A rocket ship is capable of accelerating at a rate of $0.60 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for it to get from going $55 \mathrm{mi} / \mathrm{h}$ to going $60 \mathrm{mi} / \mathrm{h}$?

Draw a picture and list knowns and unknowns Want: $\Delta \mathrm{t}$ Know: $\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{\mathrm{f}}$, a

Let's Practice!

A rocket ship is capable of accelerating at a rate of $0.60 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for it to get from going $55 \mathrm{mi} / \mathrm{h}$ to going $60 \mathrm{mi} / \mathrm{h}$?

Draw a picture and list knowns and unknowns Want: $\Delta \mathrm{t}$ Know: $\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{\mathrm{f}}$, a

$$
\mathrm{v}=\mathrm{v}_{\mathrm{o}}+\mathrm{a} \Delta \mathrm{t} \quad \text { rearrange: } \Delta \mathrm{t}=\left(\mathrm{v}-\mathrm{v}_{\mathrm{o}}\right) / \mathrm{a}
$$

1 mile $=1609 \mathrm{~m}$

Let's Practice!

A rocket ship is capable of accelerating at a rate of $0.60 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take for it to get from going $55 \mathrm{mi} / \mathrm{h}$ to going $60 \mathrm{mi} / \mathrm{h}$?

Draw a picture and list knowns and unknowns Want: $\Delta \mathrm{t}$ Know: $\mathrm{v}_{\mathrm{o}}, \mathrm{v}_{\mathrm{f}}$, a

$$
v=v_{0}+a \Delta t \quad \text { rearrange: } \Delta t=\left(v-v_{0}\right) / a
$$

Will need to convert mi/h to what?
1 mile $=1609 \mathrm{~m}$

While chasing its prey in a short sprint, a cheetah starts from rest and runs 45 m in a straight line, reaching a final speed of $72 \mathrm{~km} / \mathrm{h}$.
(a) Determine the cheetah's average acceleration during the short sprint, and (b) find its displacement at $\mathrm{t}=3.5 \mathrm{~s}$.

Problem Solving Pro-tips

1. Draw a picture!
2. Use and label your reference frame.
3. List what you KNOW and DON'T KNOW in variable form.
4. Practice helps you pick best formulas!
