
ASTR469 Lecture 10: Photometry (parts of Ch. 10)
Chapters 8–9 are not required reading but may be of interest to those who are
keen.

Assess yourself/study guide after lecture & reading (without peeking at notes)...

1. Let’s say you’re measuring your height with a ruler. Will your measurements have a
Gaussian or Poisson distribution?

2. Let’s say now you measure how many times per minute a PRT car goes by between 12
and 1pm each weekday. Will your measurements have a Gaussian or Poisson distribu-
tion?

3. Is there a maximum signal-to-noise observation you can achieve when observing a very
bright star?

4. In the absence of CCD noise, what approximate S/N would be measured for a star on
dark sky if it has a flux of 10 W/m2? Assume you have a telescope with a circular
primary aperture of radius 0.5 m.
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1 Photometry

Generically, photometry refers to quantifying the amount of light we receive.

In the past we’ve spoken a lot about the photons coming out of astronomical objects, and
the flux incident on our telescope reflector surfaces. Now it’s time to discuss actually using
the photons to make something measurable. This will involve a practical discussion of
the statistics of collecting photons in the presence of noise, which will be applicable to all
wavelength regimes.

We’ll also discuss the most common technology used to measure photons specifically in
higher-energy bands: Charge-Coupled Devices (CCDs). Ultimately, these CCDs (and other
measurement tools we’ll discuss at other wavelength regimes) help us characterize the flux
that is incident from a star onto our detector.

First, how can we tell if a source is “detected” above the noise level of our device, the
sky, and other noise sources? The signal-to-noise ratio (S/N) is the important quantity for
determining whether a source is detected or not. It is the ratio of the “signal”, or total light
collected from the source, to the “noise” or the background level (σ). While the signal is
relatively easy to understand, noise takes a bit more to comprehend. We will discuss both
then wrap it together to understand S/N.

2 Signal

Let’s say we have a source flux F in units of J s−1 m−2 Hz−1 (i.e. Watts per hertz per square
meter). We integrate for long enough, and the signal strength is just F × t, where t is the
integration time. So essentially we’re counting the total signal collected as the energy per
square meter of the detector, at a given frequency.

3 Noise

When we’re taking a measurement of anything, we don’t get the perfect measurement every
time (due to issues with our tools, with our estimation, even with natural instabilities in the
measured object itself). Instead, if we took some large measurements of anything, there is
always an error associated with a measurement that is characterized by the “noise sources”
causing the variations.

3.1 Gaussian vs. Poisson Statistics

Gaussians:
Most things you measure vary with a “Gaussian” distribution (also called a “Normal dis-
tribution”). The Gaussian distribution is symmetric, and occurs specifically when you have
an equal chance at measuring too high or too low. This is the traditional bell-shaped curve
that applies to many situations, and is given by the probability density of obtaining a mea-
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surement value of x:

f(x) =
1√

2πσ2
exp
(
− (x− µ)2

2σ2

)
(1)

The Gaussian distribution is characterized by the actual most likely signal (µ), which is
the mean of the distribution, and the breadth of the distribution (σ). Mathematically, σ
is the standard deviation of the measurements, but in practical terms it is also used as the
uncertainty in your measurement, which gives the size of the error bar you would use. See
lecture slides for reference.

Gaussian uncertainties are sometimes called “white noise.” Imagine measuring some quan-
tity. It is most likely that you measure exactly correctly (at µ), with 68% of your measure-
ments falling within 1σ of the true value, 95.8% within 2 σ, and 99.8% within 3σ.

Poissonians:
The Poisson distribution applies to situations where you’re counting discrete events; the
event either happens or it doesn’t. Events are quantized.

I like to think of it as “balls being thrown at a person.” Balls are being thrown at me at a
constant rate; over some period of time, I usually catch three. Most of the time I can catch
three, but sometimes I only catch two or one, and somewhat more rarely I happen to catch
four in that same time frame. Similarly, you might count the number of emails you receive
in one day. In astronomy, the discrete events are from photons.

In a Poisson distribution, the uncertainty σ is the square root of the number of events. If
there are 100 photons counted, 68% of the tie the “true” number of photons will be between√

100 = 10, so between 90 and 110.

4 Noise in astronomy

So generically, if you have some signal S contributing, you will get an accompanying noise√
S! Let’s consider how this works generically in all astronomy.

4.1 Source noise

The source itself of course contributes to the noise in an image. This noise source is strictly
Poissonian, but can be assumed to be Gaussian:

σsource =
√
Fsource × t (2)

4.2 Background/Sky noise

Unresolved sources in the background contribute to the overall noise level. Just like the
source noise, this is Gaussian for large enough counts:

σbg =
√
Fbg × t (3)
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4.3 Adding the Noises and Computing S/N

These noises combine by adding in quadrature. SEPARATE SOURCES OF NOISE
NEVER ADD LINEARLY! If we’re targeting an object, then based on the above two
noise sources, we get a total noise in our star’s measurement of

σtotal =
√
σ2
source + σ2

bg + ... (4)

(where ... represents any other noise source; later we will see that our detector introduces
some noise).

Putting it all together, for a star with flux Fstar and considering only those two noise sources
we’d get a S/N ratio of

S/N =
Fstar × t√
σ2
star + σ2

bg

(5)

or

S/N =
Fstar × t√

(Fstar + Fbg)t
(6)

We frequently use multiples of the noise σ to define the S/N, such that N × σ = S/N. So
a 3σ detection has three times the signal compared to the noise. We usually use 3σ as the
minimum standard for a detection, whereas 5σ is more secure.

The concept of σ is useful in how it relates to Gaussian statistics. A 1σ detection has a
68.2% chance of being real for a given pixel, 95.6% for 2σ and 99.8% for 3σ. Since there are
usually thousands of pixels, 3σ is not usually good enough.

4.4 How Can I Raise my S/N in an Observation?

There’s one cool thing to notice about the previous equation. If you move the t’s around,
you see that:

S/N =
Fstar√

(Fstar + Fbg)
× t√

t
=

Fstar√
(Fstar + Fbg)

×
√
t (7)

In other words, S/N ∝
√
t ... whoa!!! The longer you integrate, the more sensitivity

you get, but it doesn’t increase linearly with time (S/N increases more slowly). Important
note: this is only true because of the fact that the source’s signal becomes brighter with time
faster than the noise does. Integrating more with time will not help if your sky is
brighter than your target, or if other non-signal noise sources multiply quickly
with time. Sometimes we call this the “bright-source limit.”

5 Charge-coupled devices (CCDs)

CCDs use the photoelectric effect to measure incident light; within a CCD cell, the incoming
light strips off an electron and holds it in that cell until it is read out by the user into a
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computer. CCDs are used from the ultraviolet through the infrared. See the lecture slides
for images of CCDs and how they function.

A few important CCD concepts, as applied to astronomy, are:

• We don’t detect photons directly! Instead we detect photoelectrons.

• To observe in narrow bands, you need external filters; CCDs will otherwise be broad-
band light detectors. Usually these filters are pieces of glass or other material placed
along the lens/mirror path to filter light. For reference, previously we’ve spoken about
Johnson filters in the optical band.

• The number of pixels and pixel size in your CCD can also set your limiting resolution
and field of view for a telescope.

CCDs are great for registering light, and much better than other photo-detectors, for two
particular reasons (among others I’m sure):

• They have high “Quantum efficiency.” This refers to how many photons are
needed to produce one electron charge, and is also known as “gain”. If each photon
results in one stored electron, it is 100% efficient. Although not CCDs, our eyes are
said to have effective QEs of 3% for rods and 10% for cones. Good CCDs are much
better than this, maybe 40% at the ideal wavelength. Great CCDs can reach 95%
efficiency. The quantum efficiency is wavelength-dependent! Each CCD, depending on
how it is manufactured, will have a range of wavelengths where it is most sensitive and
therefore has the highest efficiency.

• CCDs are “linear” detectors. This means that if you double the number of incident
photons, you get twice the stored charge. In other words, the gain is constant irrespec-
tive of the incident photon flux. As we know, our eyes are not linear, which led to the
magnitude system. However, eventually in a long exposure (or observing something
too bright), CCDs will “saturate” (their electron storage capacity in a given pixel can
fill), and you will get fewer stored electrons that you expect for a given incident flux.

5.1 Noise specific to CCDs

As previously noted, the noise is composed of every possible source of a signal being regis-
tered. CCDs add two in particular...

Read Noise
Read noise comes from the electronics when a CCD is “read out” - when the stored charges
are turned into data.

Let r be the read-out noise per pixel (in electrons). The total read out noise is then:

σread =
√
npix × r2 =

√
npix × r (8)
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It may seem strange here to have an r2 term, and it is, but that is just by convention. We
could have just as easily defined it so that the squaring was not necessary.

Dark Current
CCDs build up “dark current” whether they are being exposed to light or not. Recall we
discussed Planck spectra for black-body emission; therefore you know that whether or not
something is really “bright,” just the fact that it’s not at 0 K means that it is to some degree
emitting photons over broad frequency bands. Dark current is caused by thermally generated
electrons that build up in the pixels of all CCDs, causing excess voltage when the CCD is
read out.

The rate of dark current accumulation depends on the temperature of the CCD (lower
temperatures better) but will eventually completely fill every pixel in a CCD. The rate can
be reduced by cooling CCD.

σDark = npix × dk × t (9)

where dk is the rate for number of electrons per pixel per second.

Putting all noise sources in a CCD observation together,

σtotal =
√
σ2
source + σ2

bg + σ2
dark + σ2

read (10)

And therefore

S/N =
F × t√

σ2
source + σ2

sky + σ2
dark + σ2

read

(11)

or

S/N =
F × t√

(Fsource + Fsky)× t+ npix × r2 + n2
pix × dk2 × t2

(12)
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