


Different Mechanisms for Molecular Spectral Line Emission

- 1. Rotational Lines
 - a. I.E. Radio CO Lines
- 2. Vibrational Lines
 - a. I.E. Radio NH₃
- Roto-vibrational Lines
 a. UV emission of H₂

Their strength is intrinsically tied to molecular structure, and the kinetics of molecules.

Simplest Example: Rotational Lines of the CO Molecule

A simple dumbbell like model for the derivation of the rotational frequencies.

Quantized orbital momentum in a Bohr-like atom:

 $L = m_{e} vr$ $= m_{e} va_{n}$ $= (m_{e} v) x (n\hbar) x (m_{e} v)^{-1}$ $= n\hbar$ $r is the allowed orbital radius for the Bohr atom.
<math display="block">a_{n} = (n\hbar) x (m_{e} v)^{-1}$

Quantized Energy from Quantized Momentum:

$$E_{rot} = (I\omega^{2}) \times (2)^{-1} \qquad L = I\omega$$

$$= (L^{2}) \times (2I)^{-1} \qquad Energy eigenvalues for L^{2} are \hbar^{2}J(J+1)$$

$$= (\hbar^{2}J(J+1)) \times (2I)^{-1} \qquad I = \mu r_{e}^{2}, \mu \text{ is the usual reduced mass.}$$

$$= (\hbar^{2}J(J+1)) \times (2\mu r_{e}^{2})^{-1}$$

Transitions between two levels:

$$\Delta E = ([(J+1)J-J(J-1)]\hbar^2) \times (2\mu r_e^2)^{-1}$$

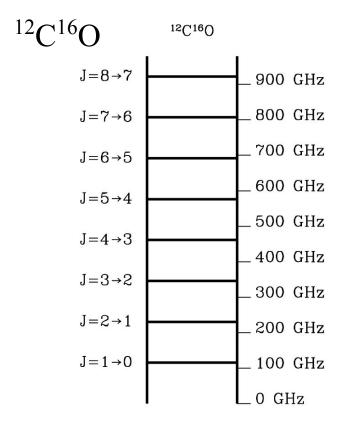
= $(2J\hbar^2) \times (2\mu r_e^2)^{-1}$
= $(Jh^2) \times (4\pi^2 \mu r_e^2)^{-1}$

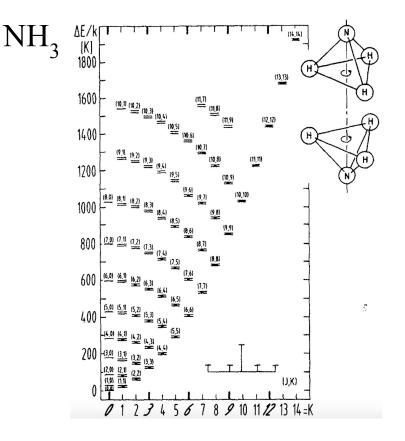
 ΔJ must be equal to ± 1 due to quantum mechanical selection rules for allowed transitions.

 $\hbar = h/(2\pi)$

Simplest Example: Rotational Lines of the CO Molecule

$$v_{\rm obs} = \Delta E/h$$


$$v_{\rm obs} = (hJ)x (4\pi^2 \mu r_e^2)^{-1}$$
 for J = 1,2,3,...


For ¹²C¹⁶O "normal CO" : $\mu \approx 1.15e-23g$ $r_e \approx 1.13e-8cm$

$$v_{\rm obs} = 115.271 \; {\rm GHz}$$

Simple vs. Complex Vibrational line spectra

7

Isotopologues*

Definition: Molecules that have identical structure and atomic composition but contain different isotopes, effectively meaning there are different numbers of neutrons.

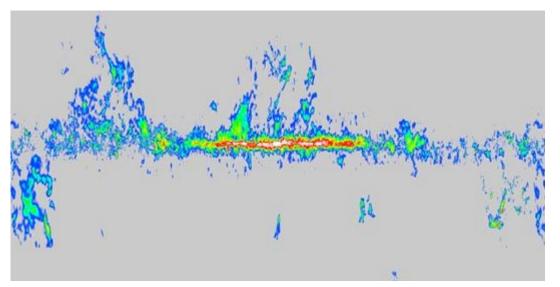
Example: ¹²C¹⁶O, ¹³C¹⁶O, ¹³C¹⁸O

*My favorite chemistry word.⁸

Isotopologues Emission:

$$[v_{1-0}^{(13}C^{16}O)]x[m(^{13}C^{16}O)] = [v_{1-0}^{(12}C^{16}O)]x[m(^{12}C^{16}O)]$$

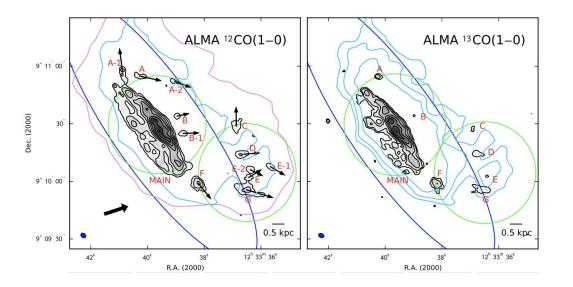
This allows for an easy calculation of the emitting frequency for different isotopologues.

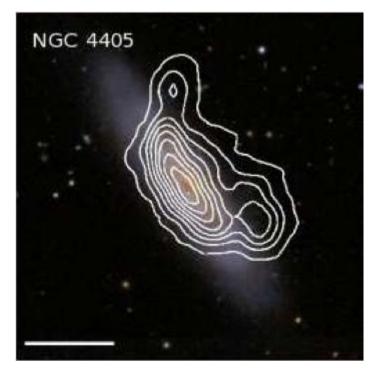

Practice Problem:

The lowest observable frequency with ALMA is 84 GHz. What is the lowest ${}^{12}C{}^{16}O$ transition ALMA can detect for a galaxy at redshift 2?

Pertinent Information:

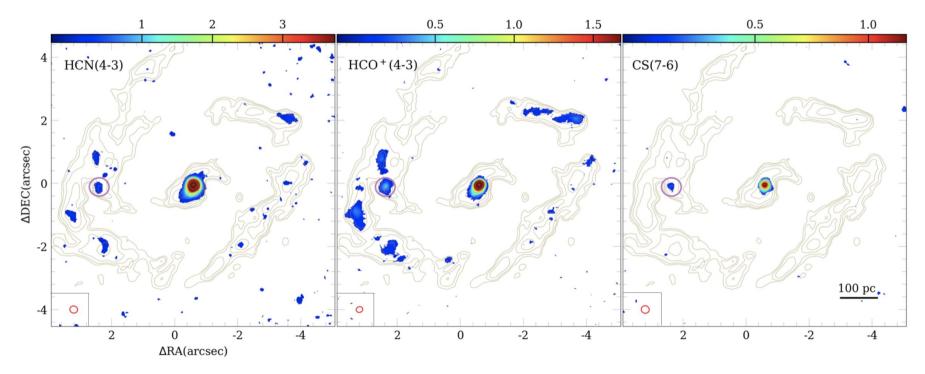
- 1. Assume ${}^{12}C^{16}O J = 1-0$ transition is at 115 GHz.
- 2. Recall that $z = (v_{em}/v_{obs}) 1$


Molecular Lines in Galaxies


Milky Way Molecule Map: Credit: T. Dame (CfA, Harvard) et al., Columbia 1.2-m Radio Telescopes

CO is an important tracer of star formation, and is often assumed to be correlated with the amount of the unobservable H_2 .

The conversion between CO column density and H₂ mass. $X_{CO} \cong 2e20 \text{ cm}^{-2} (\text{K km/s})^{-1}$



Blue and pink contours are HI and greyscale and contours are CO. **Credit:** *Lee, Bumhyun, Chung, Aeree, 2018, ApJ, The ALMA Detection of Extraplanar 13CO in a Ram-pressure-stripped Galaxy and Its Implication*

HI over optical galaxy. Credit: VIVA HI Imaging Survey 2009.

Molecular Lines and Supermassive Black Holes

Different molecules overlaid on CO contours around a supermassive black hole. **Credit** *A. Audibert et al.: ALMA captures feeding and feedback from the active galactic nucleus in NGC 613*