Observational Astronomy Astr 469

Prof Sarah Burke-Spolaor ("Sarah")

Today

- Few logisitics and course overview
- Brief overview of observational astronomy
- Foundations of the basics
 - Messengers from the sky!
 - The electromagnetic spectrum
 - Units and angles
 - Using solid angles
 - Order-of-magnitude estimation

2

The world's astrophysical suite.

4

Cave paintings, France

France: Cave paintings from 18,000 B.C. may suggest knowledge of lunar phases (29 dots)

5

Aboriginal Astronomy (Australia)

6

Telling Time...

7

Egyptian Obelisks: Time of day

American Southwest (and worldwide) Stone/sun/shadow alignments: Time of year

Phases of astronomy...

- Ancient/primitive
- Optical/Infrared era

(>1600s)

- Electromagnetic and neutrino era (>1900s)
- Gravitational-wave era

(>2015!)

Notice Curies

Notice

10

Astronomical Wavelength Regimes

Name	Wavelength	Frequency (Hz)	Photon Energy (eV)
Gamma ray	Less than 0.01 nm	more than 10 EHz	100 kev - 300+ GeV
X - ray	0.01 - 10 nm	30 EHz - 30 PHz	120 eV - 120 keV
Ultraviolet	10 nm - 400 nm	30 PHz - 790 THz	3 eV - 124 eV
Visible	390 nm - 750 nm	790 THz - 405 THz	1.7 eV - 3.3 eV
Infrared	750 nm - 1 mm	405 THz - 300 GHz	1.24 meV -1.7 eV
Microwave	1 mm - 1 meter	300 GHz - 300 MHz	1.24 µ eV - 1.24 meV
Radio	1 mm - km	300 GHz - 3 Hz	12.4 feV - 1.24 meV

Note: OOM approximation is a useful thing to practice!

13

Astronomical Wavelength Regimes

Name	Wavelength	Frequency (Hz)	Photon Energy (eV)
Gamma ray	Less than 0.01 nm	more than 10 EHz	100 kev - 300+ GeV
X - ray	0.01 - 10 nm	30 EHz - 30 PHz	120 eV - 120 keV
Ultraviolet	10 nm - 400 nm	30 PHz - 790 THz	3 eV - 124 eV
Visible	390 nm - 750 nm	790 THz - 405 THz	1.7 eV - 3.3 eV
Infrared	750 nm - 1 mm	405 THz - 300 GHz	1.24 meV -1.7 eV
Microwave	1 mm - 1 meter	300 GHz - 300 MHz	1.24 µ eV - 1.24 meV
Radio	1 mm - km	300 GHz - 3 Hz	12.4 feV - 1.24 meV

14

And now for something completely different...

Basics of Observations

We observe everything projected onto the celestial sphere

Spherical Trig

Tycho Brahe said that the nature of understanding spherical triangles is so divine and elevated that it is not appropriate to extend its mysteries to everyone

17

Spherical Trig

Everything is observed on the celestial sphere!

The separation between objects is measured in angles

The area of an object can be measured in squared angles (e.g., deg²) or steradians

Angles

18

Deg, Arcmin, Arcsec

vs.

Radians

Angles in Astronomy

Steradians

Steradians are:

- Dimensionless (squared radian)
- "Angular surface area"

21

Solid angles/Steradians

23

Steradians

22

Note: Small angle approximation!

For small angles [from Taylor series]:

$$\tan(\theta) \approx \theta$$
 $\cos(\theta) \approx 1 - \frac{\theta^2}{2}$ $\sin(\theta) \approx \theta$ ONLY USE WITH θ IN RADIANS.

Exceedingly useful approximations (But careful at θ > ~0.1 rad, or a few degrees)!

We often care about the actual size of objects, not just the angular size. We can use trig in this case:

 $tan(\theta/2) = (D/2) / d$

For small angles,

 $tan(\theta/2) \sim sin(\theta/2) \sim \theta/2$

So $\Theta = D/d$

Parsecs

Parsec:

The distance at which 1 AU appears to be 1 arcsecond large.

1 pc = $3.08 \times 10^{16} \text{ m}$

25

Parsecs

The distance at which 1 AU appears to be 1 arcsecond large.

1 pc = 3.08 x 1016 m

 $tan(1^{\circ}) = \frac{1 \text{ AU}}{1 \text{ pc}}$ Easy way to remember the conversion!