Optics and Telescopes

- Telescopes: basic ideas.
- Refraction vs reflection.
 - Ray diagrams
- Characterising optics and telescopes.

Terminology

- "Telescope"
 - Shielding/ protection.
 - Light-directing apparatus.
 - Detector.

1

Telescope Optics Descrive tens ("peinlary") Light Light

Imaging on the Focal Plane

2

Everything is upside down and backwards!

3

Secondary

The Human Eye

- The eye is a self-actuating refracting telescope!
- Images form upside-down on your retina.
- Your brain interprets the image.

What we want from a telescope

- Sensitivity boost (collect more light).
- Better resolution.
- Keep them a sensible cost (smaller, fewer materials).
- Magnification (for non-professional purposes).

6

Airy Disc

5

7

8

Resolving Two Objects

"Point sources": Just see Airy disc.

"Resolved sources": Larger angular scale than 1.22 \(\lambda/D\)

"Point Spread Function"

10

9

What we want from a telescope

- Sensitivity boost (collect more light).
- Better resolution.
- Keep them a sensible cost (smaller, fewer materials).
- Magnification (for non-professional purposes).

Magnification

- Longer f = larger image, more magnification.
- Long focal length required huge telescopes!
- Note: You don't get extra light with extra magnification!

11 12