High Energy And Non-thermal emission

- X-ray and Gamma-ray observations
 - How it's done
 - Quantifying the waves
- Multi-wavelength emission processes in the cosmos
 - Synchrotron emission
 - Bremsstrahlung
 - Compton & Inverse compton
 - Interesting sources

X-ray Observation

XMM-Newton Launched 1999 0.1 to 15 keV Resolution 6" Large FOV

Chandra Launched 1999 0.2 to 10 keV Resolution 0.5" Small FOV

NOT diffraction limited (surface accuracy limits!)

ı

2

Light Collection at X-rays

3

XMM Nested Mirrors

X-ray Detectors

- Photon rates low enough to count/trace individual events.
- X-ray: Gas photoelectric-based detectors

5

Gamma-ray Detectors

- Photon rates low enough to count/trace individual events.
- Gamma-ray: based on e-/e+ pair production.

7

Gamma-rays

Fermi Launched 2008 150 keV to 300 GeV Poor resolution: ~1 deg Large FOV: 6500 deg²

6

Emission Mechanisms

Main idea: ACCELERATED ELECTRONS.

- Non-thermal
 - Synchrotron
 - Bremsstrahlung
 - Compton / Inverse compton
 - Spectral lines
 - Pulsar emission (unknown process)
- Thermal
 - Blackbody

