

This is the Whirlpool galaxy. What is going on here? What are all those red blobs of ionized hydrogen coming from?

These are HII Regions! Ionized by young, hot massive stars.

first, some veriew of things you know. (osmology: Universe mostly H -> "HI" neutral Hydrogen.

> (+) Na, M=1

Remember Bohr model.

 (\Box)

Aside: notation in astronomy H HI-mentral H⁺, on -> HII OI+ neutral OH gone

e can be in n=2 different states... n=1 ground state or excited states.

REMEMBER LARMOR
RAD LIFETIME For n=1?
n=1 stable → quantum effects
N≥2 rad lifetime → very short.

How much energy does it take to are fully ionize H?

HI -> HI requires E > 13.6eV (2x10-185) So if you hat HI atom with this

energy it will ionize this takes a photon with nanelength $E = hv = \frac{hc}{\lambda} \xrightarrow{13.6eV} \xrightarrow{3} \xrightarrow{1} \le 912 \text{ (40-7m)}$ A short-wave photon will ionize. Blast Hydrogen Nishort-nave photons, \$, un ite i?, like the Universe, the ISM dominated by H. Mostly molecular, but big regions of HIT. (ionized hydrogen) WHAT'S GOING ON HERE?

Basic stellar evolution:

Ionized region Molecular gas & H >> -> Eventual LTE collapse deep -forced Hydrogen HI How big is Rs? HISHI Inough nate phetory keep/helg; on to Red at stable radius "Strömgren Sphere" SHI assoc. w/ Star formation

Consider: recombination ionization ≥ rafe rate Rate of e collision w/ ron. QH raye times total water me considered. rate star produces photons = 912Å Let's first consider ionitation rate. Virit con Virit Con Star toremmy un= 13.600 hu du you it's from store ine 8 Aicniz, ryphetons. Ston -We'll leave it at that. Now consider Recombination ... What is rate per volume (Nr)? Consider some volume in which the e- will recombine: recomb cross-section 4 So get I recomb = Np Arecomb = Hprotony Volume = Volume. + ypical + me til recombination $t_r = \frac{l_r}{V_e} = \frac{1}{N_p \sigma_r v_e} \gg happens$ electron Sooner u, Sooner w/ higher speed. dens, ty or higher e velozities.

For each electron mardume, get there a recomb once every tr. So for all electrons involume! Nr= ne ne np or Ve Define In a thermal distro, they have some combination velocity distribution. Let's define... "recombination Xr = <or Ve> Colfficient"

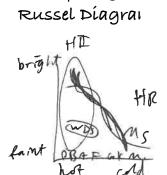
where Ve has Maxwell-Bultzman distrib. $\begin{bmatrix} F(v) dv \propto T^{-3/2} v^2 e^{-mv^2/2kT} \end{bmatrix}$ (SEE ERA B.8) Details of MB distrib don't mather except to note that $\chi_r(T_e)$ III Typical HII region in LTE: $T_e \sim 10^4 K$ III $\chi_r(10^4 k) \simeq 3 \times 10^{-19} \frac{m^3}{s}$

C

Bring it highther.
1. Highthogen:
$$N_r = n_e n_p \propto r$$

2. Hydrogen: $N_p = h_e \rightarrow N_r = n_e^{-2} \propto r$
3. In sphneg equalized ionit & recomb.
 $Q_{HH} = N_r \stackrel{H}{\longrightarrow} \pi R_s$ volume sustained.
 $R_s = \left[\frac{3 R Q_{HH}}{4 \pi \alpha r Ne^2}\right]^{\frac{1}{3}}$

EX O Stars -> young. A month sequence OGV Star Quer -SX1048 phot (Tx = 4X104K) s Ne~ 107 m-3 (Xr) = 19 3x10-19 m3/5 => Rs = 10 pc inill hotter /colder T stars have larger/smaller Rs ? why? Sun: Rs= 4AU (10⁻⁵ pc!)! (T== \$800k) Q*=10³⁵ phot/s.


HII Regions: fun science potential.

- Trace high-mass (O/B) star formation and white dwarfs.

- Place to find HII and molecular lines (as in your project 1).

- Physically very compact HII regions can only be seen in radio (they're hidden from other bands by dense molecular clouds and dust)

- HII region brightness and spectrum can give you electron densities, electron temperatures, star-formation rate, and physical properties in the region!

Herzsprung-

(You get HII regions for the hottest stars)